Development of the High-Resolution Rapid Refresh Ensemble (HRRRE)

11 January 2018

Curtis Alexander, David Dowell, Terra Ladwig, Ming Hu, Jeff Beck, Isidora Jankov, Trevor Alcott, Brian Jamison, John Brown, Steve Weygandt, Stan Benjamin

NOAA/ESRL/GLOBAL SYSTEMS DIVISION
RAP/HRRR: Hourly-Updating Weather Forecast Suite

13-km Rapid Refresh (RAPv4) – to 39h (May 2018)

3-km High-Resolution Rapid Refresh (HRRRv3) – to 36h (May 2018)

750-m HRRR nest Scale-aware Physics Testing (ongoing)

3-km High-Resolution Time Lagged Ensemble (HRRR-TLE)

3-km Storm-Scale Ensemble Analysis and Forecast (HRRRE)
55% CONUS HRRR Experimental (ongoing)
RAP/HRRR: Hourly-Updating Weather Forecast Suite

- **13-km Rapid Refresh (RAPv4)** – to 39h (May 2018)
- **3-km High-Resolution Rapid Refresh (HRRRv3)** – to 36h (May 2018)
- **750-m HRRR nest Scale-aware Physics Testing** (ongoing)
- **3-km High-Resolution Time Lagged Ensemble (HRRR-TLE)**
- **3-km HRRR-Smoke (VIIRS fire data)**
- **3-km High-Resolution Rapid Refresh Alaska, Hawaii and Puerto Rico Testing (HRRR-AK, HRRR-HI, HRRR-PR)** Experimental (ongoing)
- **3-km Storm-Scale Ensemble Analysis and Forecast (HRRRE)** 55% CONUS HRRR Experimental (ongoing)
Upcoming RAPv4/HRRRv3

No Change in CONUS Domains

Newer Model Version
More Ensemble Weight
Advanced “Physics Suite”

Seasonal Vegetation Fraction/Leaf Area Index

Table: RAPv4/HRRRv3 Summary of Changes

<table>
<thead>
<tr>
<th>Model</th>
<th>Run at:</th>
<th>Domain</th>
<th>Grid Points</th>
<th>Grid Spacing</th>
<th>Vertical Levels</th>
<th>Vertical Coordinate</th>
<th>Pressure Top</th>
<th>Boundary Conditions</th>
<th>Initialized</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP</td>
<td>GSD, NCO</td>
<td>North America</td>
<td>953 x 834</td>
<td>13 km</td>
<td>50</td>
<td>Sigma-Isob Hybrid</td>
<td>10 mb</td>
<td>GFS</td>
<td>Hourly (cycled)</td>
</tr>
<tr>
<td>HRRR</td>
<td>GSD, NCO</td>
<td>CONUS</td>
<td>1799 x 1059</td>
<td>3 km</td>
<td>50</td>
<td>Sigma-Isob Hybrid</td>
<td>20 mb</td>
<td>RAP</td>
<td>Hourly (pre-forecast hour cycle)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Version</th>
<th>Assimilation</th>
<th>Radar DA</th>
<th>Radiation LW/SW</th>
<th>Microphysics</th>
<th>Cumulus Param</th>
<th>PBL</th>
<th>LSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP</td>
<td>WRF-ARW v3.8.1+</td>
<td>GSI Hybrid Ensemble to 0.85</td>
<td>13-km DFI, ½ Strength</td>
<td>RRTMG/ RRTMG</td>
<td>Thompson Aerosol v3.8.1</td>
<td>GF + Shallow</td>
<td>MYNN v3.8.1</td>
<td>RUC v3.8.1</td>
</tr>
<tr>
<td>HRRR</td>
<td>WRF-ARW v3.8.1+</td>
<td>GSI Hybrid Ensemble to 0.85</td>
<td>3-km 15-min LH</td>
<td>RRTMG/ RRTMG</td>
<td>Thompson Aerosol v3.8.1</td>
<td>None</td>
<td>MYNN v3.8.1</td>
<td>RUC v3.8.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Horiz/Vert Advection</th>
<th>Scalar Advection</th>
<th>Upper-Level Damping</th>
<th>Diffusion Option</th>
<th>6th Order Diffusion</th>
<th>SW Radiation Update</th>
<th>Land Use</th>
<th>MP Tend Limit</th>
<th>Time-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAP</td>
<td>5th/5th Positive</td>
<td>Positive</td>
<td>w-Rayleigh 0.2</td>
<td>Full (2)</td>
<td>Yes 0.12</td>
<td>20 min</td>
<td>MODIS Seasonal</td>
<td>0.01 K/s</td>
<td>60 s</td>
</tr>
<tr>
<td>HRRR</td>
<td>5th/5th Positive</td>
<td>Positive</td>
<td>w-Rayleigh 0.2</td>
<td>Full (2)</td>
<td>Yes 0.25</td>
<td>15 min with SW-dt</td>
<td>MODIS Seasonal</td>
<td>0.07 K/s</td>
<td>20 s</td>
</tr>
</tbody>
</table>

IOAS-AOLS
RAPv4/HRRRv3
11 Jan 2018
3
HRRR Ensemble Development/Testing

Deterministic HRRR:
- High-resolution forecast provides small-scale details
- Hourly-updating with fresh forecast always available

Time-Lagged Ensemble (HRRR-TLE):
- Leverage runs in ensemble of opportunity
- Form hazard likelihood probabilities
- Less small-scale detail
- Proxy for confidence/certainty
- Underdispersive

HRRR Ensemble (HRRRE):
- More expensive ensemble
- More spread/dispersive/skill
Complementary Systems: HRRRE and WoF

HRRRE

- 3-km CONUS
- Fixed domain
- Hourly updating
- 0-36 hr forecast (2-18 hr)
- “Watch-on-Forecast”
- Mesoscale uncertainty information
- Information supplied to WoF and FACETs
- Many types of “high-impact” weather (clouds, winter precip)

WoF

- < 1-km Sub-CONUS
- On-demand domain
- Sub-hourly updating
- 0-3 hr forecast (severe)/0-6 hr QPF
- “Warn-on-Forecast”
- Storm-scale uncertainty information
- Information supplied to FACETs
- Severe storms and heavy rain
Underdispersive:
Observations frequently fall outside range of ensemble forecasts

Overdispersive:
Ensemble frequently forecasts a very large range of solutions

IOAS-AOLS • Ensemble Spread

Ensemble Forecast Challenge: Spread vs Error

11 Jan 2018
Real-Time Web Graphics
http://rapidrefresh.noaa.gov/HRRRE

- Single core (ARW)
- Ensemble DA (GSI-EnKF)
- RAP mean + GDAS (GFS) perturbations
- Conventional observations only (no radar data)

Assimilation
- 20 members
- 1 hr cycling
- 21 fcsts / day
- Start 21z day zero
- End 18z day one

Forecast
- 00z - Three mem to 30 hr
- 03z - Three mem to 27 hr
- 12z - Six mem to 18 hr
- 15z - Eighteen mem to 15 hr
- 18z - Eighteen mem to 12 hr

Proof-of-concept
Real-time demonstration
With NSSL Experimental WoF System for ensembles “NEWS-e”
• Chased the weather across CONUS with movable on-demand domain
• Used 15-km outer domain for LBCs
HRRRE Case Study: 23 December 2015

Updraft Helicity (m²/s²) 3-7 h forecast

Reports for 12/23/15

- High Wind Report (65KT+)
- Large Hail Report (2" dia. +)

PRELIMINARY DATA ONLY

11 Jan 2018
HRRRE Case Study: 09 May 2016

Convective initiation along dryline

Rain-cooled Boundary

Tornadic supercell development near residual outflow boundary intersection

15z

20z

21z

22z

20z

RS

HRRRE

IOAS-AOLS

11 Jan 2018
1-hr Maximum Updraft Helicity Valid 22z
(colors > 25 m2/s2)

HRRRX 15z-17z initializations
Time-Lagged Ensemble

HRRRE 15z + 7hr fcst valid 22z
HRRRE Observation Space Diagnostics

Black = Observation Error
Red = Ens Bias (mean obs innovation)
Green = Total Spread (ensemble standard deviation + ob error)
Blue = Ens Forecast Error (innovation standard deviation)

Need accurate specification of observation error
Ensemble spread << Observation error → Not drawn towards obs
Based on initial results obs. errors reduced for some datasets

Want total spread to track with forecast errors of the day (green = blue)
Good spread-skill ratio during cycling for most ob types
Ensemble underdispersive in forecast

ACARS temperature (K)

1-h cycling

0-15 h forecast

11 Jan 2018
HRRRE 2017

Real-Time Web Graphics
https://rapidrefresh.noaa.gov/hrrr/HRRRE

- Single core (ARW)
- Hourly cycling ensemble DA (DART and GSI-EnKF)
- RAP mean + GDAS perturbations w/more inflation
- Conventional + Radar reflectivity observations
- Adaptive multiplicative posterior inflation
- Soil moisture + lateral boundary perturbations
- Stochastic LSM and PBL (time permitting)
- Cloud analysis + soil adjustments
- HRRR-TLE post-processing

Proof-of-concept
Real-time demonstration
With NSSL Experimental WoF System for ensembles “NEWS-e”

Assimilation
36 members
1 hr cycling
21 fcsts / day
Start 09z day one
End 00z day two

Forecast
12z – Nine members to 18 hrs
15z – Nine members to 18 hrs
18z – Nine members to 18 hrs
00z – Nine members to 36 hrs
HRRRE 2017 Design

DA Ens

RAP Mean

36 GDAS Members

3-km interp

36 HRRRE members

Ensemble Kalman Filter

10z

36 HRRRE Initial Conditions

Sat/Conv Obs

GSI Soil Adj + Cloud Anal

36 1-hr fcsts

11z

36 HRRRE Initial Conditions

Sat/Conv Obs

GSI Soil Adj + Cloud Anal

36 1-hr fcsts

12z

Ensemble Kalman Filter

36 HRRRE Initial Conditions

Sat/Conv Obs

GSI Soil Adj + Cloud Anal

36 1-hr fcsts

9 HRRRE 18-hr fcsts

Stochastic Parameter Perturbation (SPP) PBL - 00z Only

IOAS-AOLS • HRRRE Design 11 Jan 2018 • 14
14 April 2017 Severe Weather

Isolated Supercell
00z 15 April 2017

SPC Storm Reports for 04/14/17
near isolated STORM TRACK

30 dBz reflectivity CSI vs. forecast length

Increased short-range (0-6 hr) skill from ensemble system

Deterministic HRRR

HRRRE 04/14/2017 (18:00) 6h fcst - Experimental
Valid 04/15/2017 00:00 UTC

Composite reflectivity dB
16 May 2017 Severe Weather Outbreak
2017 Flash Flood and Intense Rainfall Experiment
June 19 - July 21, 2017 Weather Prediction Center College Park, MD
Findings and Results
Sarah Perfater - I.M. Systems Group, NOAA/NWS/WPC/HMT
Benjamin Albright - Systems Research Group, NOAA/NWS/WPC/HMT

Four week 00z initialization 18-24 hr forecast of blended (50% probability matched, 50% arithmetic) mean QPF

Figure 19. Box plot of the subjective scores for the SSEFX, HRRRE, and HREFv2 6 hour blended mean QPF over the course of the experiment. Red plus symbols denote outliers.

Figure 20. ROCz Performance Diagram showing skill of the 6 hour blended mean forecast for 0.5 inch QPF from the HREFv2 (dark blue), SSEFX (magenta), and HRRRE (cyan).

Figure 21. ROCz Performance Diagram showing skill of the 6 hour blended mean forecast for 1 inch QPF from the HREFv2 (dark blue), SSEFX (magenta), and HRRRE (cyan).
26-28 Aug 2017 Harvey Extreme Rainfall

Experimental
HRRRE Forecast

Ensemble Maximum 36-h QPF (inches)
1200 UTC 26 Aug - 0000 UTC 28 Aug

MRMS Radar-Only Observations
48-h QPE (inches)
1200 UTC 26 Aug - 1200 UTC 28 Aug
RAP/HRRR: Hourly-Updating Weather Forecast Suite

13-km Rapid Refresh (RAPv4) – to 39h (May 2018)
Initial & Lateral Boundary Conditions

3-km High-Resolution Rapid Refresh (HRRRv3) – to 36h (May 2018)
Initial & Lateral Boundary Conditions

750-m HRRR nest Scale-aware Physics Testing (ongoing)

3-km High-Resolution Time Lagged Ensemble (HRRR-TLE)

3-km High-Resolution Smoke (VIIRS fire data)

3-km High-Resolution Rapid Refresh Alaska, Hawaii and Puerto Rico Testing (HRRR-AK, HRRR-HI, HRRR-PR) Experimental (ongoing)

3-km Storm-Scale Ensemble Analysis and Forecast (HRRRE) 55% CONUS HRRR Experimental (ongoing)
Frequency Bias Correction Using “Quantile Mapping”

Model forecast climatology adjusted to observation climatology for a particular threshold (1 inch / 6 hrs)

Exploring modified gamma distribution for additional refinement in bias correction

99th %ile analysis climatology = 1.00”

99th %ile model climatology = 1.23”
HRRR-TLE Precipitation Products

Results: Probability of 0.5” Precipitation in 6 hours
May-Aug 2015

With relatively small sample size (~50 forecasts)

Produce statistically reliable probabilities
60% forecasts observed 60% of the time

Produce probabilities with sufficient resolution/sharpness
Large dynamic range to probabilities including extremes

Still fundamentally underdispersive (overconfident)
HRRR Time-Lagged Ensemble (HRRR-TLE)

Current Experimental Probability Products:
- Based on 3 HRRRX runs (equal weight)
- Starting with forecast hour two
- 40-km neighborhood probabilities
- 120-km spatial filter applied after identifying neighborhood hazard exceedance

Real-Time Web Graphics (and grids via LDM/FTP)
http://rapidrefresh.noaa.gov/hrrr/hrrrtle
HRRR-TLE forecasts > 60% probability of 6hr QPF exceeding 100 year average return interval (ARI) in Houston, TX area based on ATLAS14
HRRR-TLE Case Study: 12 UTC 23 June 2016

HRRR-TLE forecasts > 40% probability of 6hr QPF exceeding 100 year average return interval (ARI) in West Virginia area based on ATLAS14

6 hr QPE Valid 18z 23 June 2016

6 hr PQPF > 3”

3+” observed

24 hr QPE Valid 06z 24 June 2016

6 hr PQPF > 100 year ARI

10+” observed

HRRR-TLE 15 hr fcst valid 15z 23 June 2015
HRRRE vs HRRR

HRRRE skill > HRRRv3

to 10 hrs

HRRRv3 skill > HRRRE

beyond 10 hrs

Benefit of storm-scale ensemble DA

Need to improve meso-synoptic-scale DA
HRRRE 2018

Real-Time Web Graphics
https://rapidrefresh.noaa.gov/hrrr/HRRRE

- Single core (ARW)
- Hourly cycling ensemble DA (GSI-EnKF only)
- RAP mean + 15-km RAP-like mesoscale perturbations
- Conventional + reflectivity + radial velocity + cloud base height
- Adaptive multiplicative posterior inflation, vertical localization
- Soil moisture + lateral boundary perturbations
- Stochastic parameters across entire physics package
- Cloud analysis + soil adjustments
- HRRR-TLE post-processing

Assimilation
- 36 members
- 1 hr cycling
- 21 fcsts / day
- Start 09z day one
- End 00z day two

Forecast
- 12z – Nine members to 18 hrs
- 15z – Nine members to 18 hrs
- 18z – Nine members to 18 hrs
- 00z – Nine members to 36 hrs

Producing all GRIB2 output on CONUS HRRR grid (missing data will be in regions when 55% CONUS executed)

Proof-of-concept
Real-time demonstration
With NSSL Experimental WoF System for ensembles “NEWS-e”
RAP/HRRR Implementation Roadmap

ESRL/GSD – experimental version

- RAPv4 – GSD tested in 2016-17
 - Is initializing 2017 ESRL-HRRR(v3)
 - Improved PBL, LSM, cu-parm, DA
 - WRFv3.8.1 w/Thompson/NCAR aerosol-aware microphysics

- HRRRv3 – GSD tested in 2016-17
 - Initialized by 2017 RAP (v4)
 - Improved radar assimilation, hybrid vertical coordinate, PBL/cloud physics

- RAPv5 – GSD testing in 2018-19
 - Improved PBL, LSM, cu-parm, DA

- HRRRv4 – GSD testing in 2018-19
 - Improved 3km physics
 - Full 3-km hourly cycling
 - Storm-scale ensemble data assimilation and forecasts (HRRRE)?
 - Cycling of aerosols with fire/smoke/emissions

NWS-NCEP - operational

- Implement mid 2018

See R2O Session 1:30-3:00 pm Hilton Room 404
RAPv4/HRRRv3: 2:30-2:45 pm

IOAS-AOLS • Timeline

11 Jan 2018 • 27